欢迎光临
我们一直在努力

2019年湖北武汉事业单位考试《综合应用能力》C 类真题

一、注意事项

1、本试卷满分100 分,时限120 分钟。

2、请在试题本、答题纸的指定位置按要求填写(涂)姓名和准考证号。

3、请用签字笔或钢笔在答题纸的指定区域内作答,超出答题区域的,作答无效。在试题本上作答无效。4、所有题目一律使用现代汉语作答,未按要求作答的,不得分。

5、监考人员宣布考试开始后,考生方可开始答题。监考人员宣布考试结束时,考生应立即停止答题,将试题本、答题纸整理好放在桌面上,待监考人员清点无误后,方可离开。

二、给定材料

材料1

2017 年度的诺贝尔生理或医学奖颁给了3 位美国科学家(Michael W.Young、Jeffrey C.Hall 和Michael Rosbash),以表彰他们在发现果蝇生物钟基因及分子调控机制过程中的重要贡献。此次颁奖也使得生物节律和时间生物学研究领域的诸多科学问题再次引起人们的广泛关注。

太古至今,承载着众多生命的地球在自转的同时还在围绕着太阳公转,导致光照、温度、潮汐、养分和湿度等环境因素均呈现出明显的周期性变化,这些周期性变化的环境因子极大地影响着地球上生物体生长发育和新陈代谢的过程。在漫长的进化历程中,生物体通过调整机体内的生理生化过程以及自身的行为等来适应环境信号的周期性变化,进而增强其种群的生存和竞争能力。生物体表现出的这种周期性变化的特征被称为生物节律。生物节律无处不在,不同生物有着不同节律,同一生物也有多种节律。有些动物每年周期的冬眠、有些植物每年周期的长叶落叶,动物还有如呼吸和心跳等更快的周期。

大量研究表明,无论是复杂生物还是简单生物,它们都拥有内部时钟帮助其调节生理活动以适应昼夜变化。所有地球上的生命都受其控制,以适应24 小时的周期。这种调节机制被称为“昼夜节律(circadianrhythm)”,它源自拉丁文的“cira”(“周期”)及“dies”(“一天”)。

人类很早就已注意到生物钟对身体健康的重要影响,中国古人早在两千多年前的中医经典《黄帝内经》中就已有“阴阳平衡”“天人合一”“子午流注”等概念。中医针灸认为“人与天地相应”,即人体功能、活动、病理变化等受自然界气候变化、时日等影响而呈现一定的规律,应“因时施治”“按时针灸”“按时给药”,选择适当时间治疗疾病以获得较佳疗效。中医认为人体中十二条经脉对应于每日的十二个时辰,不同经脉中的气血在不同时辰也有盛有衰。

公元4 世纪,人们已经知道罗望子树叶活动的昼夜差别。十七世纪,意大利生理学家Santorio 曾用30 年记录自己从早到晚的摄食量、排泄量和体重变化,发现有昼夜规律。1729 年,法国天文学家Mairan 进行了一个著名实验,他将含羞草放置在全暗处一段时间,观察其叶片和花的变化,发现叶片活动不依赖阳光,仍然有张有合,证明了植物内禀的昼夜节律和生物时钟。Darwin 通过研究植物的节律,提出昼夜节律具有可遗传性,触碰到了生物钟的实质。

1

美国约翰·霍普金斯大学的Richter 在20 世纪60 年代以大鼠为模型,用手术的方法在大鼠大脑的各个部位做200 多次实验后,最终发现大鼠下丘脑的前端是大鼠生物钟的中心。后来美国加州大学伯克利分校的Zucker教授和芝加哥大学的Moore 教授对下丘脑作了进一步的精确损伤研究,发现下丘脑前端的视交叉上核(Suprachiasmatic Nucleus)(SCN)是启动大鼠生物钟的关键元件。当他们人为地损伤视交叉上核时,大鼠的内分泌节律和行为节律就丧失,由此判定视交叉上核可能是大鼠生物钟的起搏器。最终确定视交叉上核为生物钟中心的是日本东京大学的井上进一(Shinichi Inouye)和川村宏(Hiroshi Kawamura)。他们直接测量了视交叉上核神经细胞在体内和体外的电生理活动,发现视交叉上核神经细胞的电生理活动是以24 小时为周期的日节律活动,由此确定了视交叉上核为哺乳动物生物钟的振荡器。后来的许多实验进一步证明,哺乳动物的很多节律性行为和生理活动,如睡眠、运动、警觉、激素水平、体温、免疫功能、消化功能等,都受视交叉上核调控。虽然后来的研究发现体内其他许多细胞和组织也都有它们自己的以24 小时为周期的生物钟,但视交叉上核起到了一个调控和协调周围组织的生物钟保持同步运行的作用,从而被称为“主钟”。视交叉上核一方面是大脑中许多直接从视网膜接受神经信号的核之一,通过视网膜下丘脑束从视网膜上的一些光敏神经节细胞中接受信号;另一方面它和大脑的其他许多部分相互作用,将信号传递给大脑的其他部位。

1971 年前后,Benzer 和他的学生Konopka 致力于找到控制果蝇昼夜节律的基因。他们发现一种未知基因,其突变会打破果蝇的正常昼夜节律,因此将该基因命名为period(PER)(节律基因)。很多人不相信他们能够找到生物钟的基因,包括Benzer 的老师,1969 年诺奖得主Max Delbruck。

1980 年代,洛克菲勒大学Young 的课题组、布兰迪斯大学的Hall 和Rosbash 的团队均在竞争先克隆出果蝇的PER 基因。1984 年,Hall 和Rosbash 紧密协作,与Young 领导的课题组分别成功分离出PER 节律基因,随后发现PER 基因转录翻译的蛋白质会受到昼夜节律控制,在夜晚积累并在白天降解,其浓度水平存在24 小时的周期性起伏,这与昼夜节律相一致。

为理解这种昼夜周期的蛋白质浓度起伏的产生与维持,1990 年,Hall、Rosbash 与Paul Hardin 提出抑制反馈回路的模型。他们假设PER 蛋白质会抑制节律基因的活动,即PER 的基因转录PER 的mRNA、翻译产生PER蛋白质的过程存在负反馈,则通过一条抑制反馈回路可以阻止PER 蛋白质自身的合成,而PER 的mRNA 或蛋白质产生后又可以影响PER 基因自身的转录,从而在一个连续的昼夜周期中形成节律。如果这一假设正确,那么PER蛋白质就是基因的转录调控因子。之后的一系列实验证实了这一设想,这是一个重要突破,使人们真正看到了PER 基因的调控作用。

抑制反馈回路导致的转录调控设想获得成功,但也产生出新的问题,需要解决由细胞质产生的PER 蛋白质如何抵达细胞核以抑制节律基因活动的问题。表面上这是一个细胞层次的问题,但实际上是基因层次的问题。随后一系列实验证据表明,转录的调控过程不只由PER 参与,还与多个基因有关,这说明影响生物钟不可能只有一个PER 基因。这促使人们走上了继续寻找其他调控基因的漫漫征程。1991 年,Konopka 等发现第二个影响果蝇生物钟的基因Andante;1994 年,Young 发现第二种能够产生维持正常昼夜节律必要成分的节律基因

timeless(TIM)。Young 进一步证明了一种调节反馈机制,即当PER 和TIM 这两种蛋白质相互结合时,它们就可以进入到细胞核并发挥作用,抑制节律基因的活动并关闭抑制反馈回路,从而解释了细胞内蛋白水平出现变动的原因。之后,Young 又确定了能编码导致PER 蛋白积累的doubletime(DBT)基因,它控制了这种变动的频率。这为解释蛋白质水平变动如何与24 小时周期密切吻合提供了线索。

进一步的一个重要工作是确认能否在其他生物中找到同样的基因、调控因子和同样的调控机理,尤其找到哺乳类生物钟的基因。这个突破由西北大学的日裔科学家Takahashi 完成,他成功发现了影响老鼠生物钟的“钟”(Clock)基因。Takahashi 团队还发现人、鸡、蜥蜴、蛙、鱼等也都有Clock 基因。之后人们陆续又发现哺乳类的三个PER 基因PER1、PER2、PER3,并发现PER 基因表达在SCN,其表达随昼夜节律变化而变化,这一节律受Clock 基因的调节。有趣的是,1998 年,Hall 和Rosbash 实验组通过遗传筛选在果蝇中找到的Jrk基因即果蝇的Clock 基因。这样,在果蝇中发现的PER 基因在哺乳类中找到了,这种生物钟基因的高度保守性显示了生物钟在基因水平的共同性、普适性和可遗传性。

经过30 年的研究,科学家现在对动物中以24 小时为周期的生物钟的构成和机理已经有了基本了解。动物生物钟的循环律动基本上是一个基因表达的负反馈环路,是一个基因表达的振荡器。在这个负反馈环路中,有两个调控基因转录的异二聚体蛋白起了关键作用:一个是直接作用于DNA 促进转录的转录因子CLK 和CYC 的二聚体CLK-CYC,另一个是抑制CLK-CYC 转录功能的PER 和TIM 的二聚体PER-TIM。CLK-CYC 的功能是促进一系列包括PER-TIM 在内的和生物钟行为相关的基因的表达。这些基因的启动子部位都有一段称为E 盒元件的DNA 序列,CLK-CYC 二聚体作用于E 盒序列促进这些基因的表达,表达后的PER 和TIM 蛋白先在细胞质中逐渐累积,到了晚上当两种蛋白累积达到一定的量后又被转运到细胞核中转而抑制CLK-CYC 的转录活性,从而抑制它们自己以及所有CLK-CYC 下游基因的表达,减少被表达的量。而在细胞质中的PER 蛋白被逐渐水解,从而构成了一个以24 小时为周期的负反馈调节基因转录和翻译的振荡器TTFL。

这种以24 小时为周期的节律具有一种特性,就是它的起始点或相位可以被光照重新设置。这个重设置过程也是一个由蛋白质介导的生物化学过程。在果蝇中,这个有重设置功能的蛋白称为cryptochrome(CRY)。CRY蛋白有感光的功能,它和TIM 的相互作用是光依赖的,并且这种相互作用的结果是TIM 的降解。失去TIM 的PER蛋白不稳定,最终也在有光照的白天被降解,其结果就是减少了对CLK-CYC 二聚体功能的抑制,从而使得CLK-CYC介导的基因转录重新开始。

对其他物种的生物钟研究表明,动物中的生物钟基因相似,但和植物和微生物的基因不同。然而,尽管不同种生物的生物钟基因有差异,但它们的工作原理都是类似的。这个负反馈调节构成了所有生命所共有的、最基本的生物化学反应的振荡器——基因表达的振荡器。这个基因表达振荡器决定了生物的生物钟行为。

随着一个个调控基因的发现和研究,驱动生物钟的内在机理也逐渐明朗。从果蝇到人存在同样一批控制生物钟的基因,它们编码的蛋白质合作共事,节律性地调节细胞内的基因转录,且都采用负反馈模式,并与光和

癌变之前,而结论说的是癌变之后还会继续基因突变,论据和结论之间相互冲突,属于自相矛盾的错误。(140字)

④第四段由“某些基因突变,能够极大增加突变基因携带者患癌的几率”推出“癌症能够诱导基因发生实变”存在论证错误。因为论据中基因突变是原因,患癌是结果,而结论中患癌是原因,基因突变是结果,属于因果倒置的错误。

3、参考答案:

科技是扶贫工作的助推器

产业扶贫、精准扶贫使扶贫工作取得了决定性的进展,6000 万贫困户稳定脱贫,成绩喜人。但不可否认在扶贫工作中还存在扶贫项目质量不高,甚至项目失败等问题,破解问题的最有效、最持久的方法就是科技,我们需要努力创新,科学部署,狠抓落实,发挥科技人才和科技资源的在扶贫工作中的推动作用,实现脱贫工作保质保量完成,为乡村振兴做出贡献。

凡谋之道,周密为宝。要想下好扶贫这盘大棋,亦需要科学规划,谋定而后动。可以根据不同的区位、气候、资源、人口情况制定不同的扶贫方案。因地制宜,探索出最适合当地发展的产业模式,用最实用的科技方法,以最少的投入,带来最大的效应。

找准路子固然重要,但只有项目还不够,还需要科技人才的加入,才能让产业项目平稳落地。扶贫绝不是口头上的文章,面子上的工程,需要广大科技人才俯下身子、深入田间地头,进行现场指导,方能出成果、见实效。比如黄冈开展的“科技特派员助推精准扶贫行动”,就是立足贫困村的自然条件,通过“派专家、转成果、建基地、扶产业、育人才”等方式,发展特色产业,带动贫困户脱贫致富。广大科技工作者,正在用他们的“智”,来塑造贫困地区的“富”。

俗话说:“工欲善其事,必先利其器”,科技资源就是人才手中的一把利器。我们可以将科技资源嫁接于脱贫项目上,助推特色产业的发展,为脱贫攻坚做出贡献。农产品仪器设备的应用让贫困地区尝到科学种植的甜头,实现了产量与质量的双丰收;电商平台实现了城乡互通,为苦无销路的农产品打开了市场,也实现了贫困地区的脱贫致富。正是这一项项科技资源为贫困地区带来了福音,带来了希望。

都说知识改变命运,科学知识、科学方法、科技手段正在改变贫困地区人民的命运,让他们过上好日子。试想如果没有科技知识的传授,关桥村的硒甜瓜也不可能提前上市,也许广大村民还在贫困线上挣扎。无独有偶,大悟县正是引进武汉高校技术,创建蔬菜良种繁育基地,才实现农业亩纯产值1 万多元。我们从贫困户的身上、扶贫项目上、地区发展上都看到了科学知识的可贵,更看到了脱贫致富的曙光。

科技为贫困地区注入了生机与活力,为贫困户带来了知识与希望,成为脱贫工作中不可或缺的一部分。我们有理由相信,在科技的推动下,一定能够顺利完成脱贫攻坚工作,促进乡村经济发展,实现乡村振兴战略。

8

2019年湖北武汉事业单位考试《综合应用能力》C 类真题.docx¥3.00

周付会员¥2.00
月付会员¥1.00
季付会员¥0.50
已付费?登录刷新
赞(0) 打赏
未经允许不得转载:泽熙美文 » 2019年湖北武汉事业单位考试《综合应用能力》C 类真题

评论 抢沙发

更好的WordPress主题

支持快讯、专题、百度收录推送、人机验证、多级分类筛选器,适用于垂直站点、科技博客、个人站,扁平化设计、简洁白色、超多功能配置、会员中心、直达链接、文章图片弹窗、自动缩略图等...

联系我们联系我们

觉得文章有用就打赏一下文章作者

非常感谢你的打赏,我们将继续提供更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫

微信扫一扫

登录

找回密码

注册